Intracellular signaling mechanisms of acetaminophen-induced liver cell death.

نویسندگان

  • Hartmut Jaeschke
  • Mary Lynn Bajt
چکیده

Acetaminophen hepatotoxicity is the leading cause of drug-induced liver failure. Despite substantial efforts in the past, the mechanisms of acetaminophen-induced liver cell injury are still incompletely understood. Recent advances suggest that reactive metabolite formation, glutathione depletion, and alkylation of proteins, especially mitochondrial proteins, are critical initiating events for the toxicity. Bcl-2 family members Bax and Bid then form pores in the outer mitochondrial membrane and release intermembrane proteins, e.g., apoptosis-inducing factor (AIF) and endonuclease G, which then translocate to the nucleus and initiate chromatin condensation and DNA fragmentation, respectively. Mitochondrial dysfunction, due to covalent binding, leads to formation of reactive oxygen and peroxynitrite, which trigger the membrane permeability transition and the collapse of the mitochondrial membrane potential. In addition to the diminishing capacity to synthesize ATP, endonuclease G and AIF are further released. Endonuclease G, together with an activated nuclear Ca2+,Mg2+-dependent endonuclease, cause DNA degradation, thereby preventing cell recovery and regeneration. Disruption of the Ca2+ homeostasis also leads to activation of intracellular proteases, e.g., calpains, which can proteolytically cleave structural proteins. Thus, multiple events including massive mitochondrial dysfunction and ATP depletion, extensive DNA fragmentation, and modification of intracellular proteins contribute to the development of oncotic necrotic cell death in the liver after acetaminophen overdose. Based on the recognition of the temporal sequence and interdependency of these mechanisms, it appears most promising to therapeutically target either the initiating event (metabolic activation) or the central propagating event (mitochondrial dysfunction and peroxynitrite formation) to prevent acetaminophen-induced liver cell death.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

REVIEW Intracellular Signaling Mechanisms of Acetaminophen-Induced Liver Cell Death

Acetaminophen hepatotoxicity is the leading cause of druginduced liver failure. Despite substantial efforts in the past, the mechanisms of acetaminophen-induced liver cell injury are still incompletely understood. Recent advances suggest that reactive metabolite formation, glutathione depletion, and alkylation of proteins, especially mitochondrial proteins, are critical initiating events for th...

متن کامل

Protective role of licochalcone B against ethanol-induced hepatotoxicity through regulation of Erk signaling

Objective(s): Oxidative stress has been established as a key cause of alcohol-induced hepatotoxicity. Licochalcone B, an extract of licorice root, has shown antioxidative properties. This study was to investigate the effects and mechanisms of licochalcone B in ethanol-induced hepatic injury in an in vitro study. Materials and Methods: An in vitro model of Ethanol-induced cytotoxicity in BRL cel...

متن کامل

Involvement of Mu Opioid Receptor Signaling in The Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamineinduced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma...

متن کامل

TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms

In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver ...

متن کامل

15-Deoxy-Δ12,14-Prostaglandin J2 Protects PC12 cells from LPS-Induced Cell Death Through Nrf2 pathway in PPAR-γ Dependent Manner

Introduction: The inflammatory response requires a coordinated integration of various signaling pathway including cyclooxygenase (COX). COX catalyzes the formation of prostaglandins from arachidonic acid. Among prostaglandins, 15-Deoxy-D12, 14-prostaglandin J2 (15d-PGJ2), an endogenous ligand of Peroxisome proliferator-activated receptor-gamma (PPAR-γ), has been demonstrated to have anti-inflam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2006